logo TZB-info

estav.tv nový videoportál

Reklama

Prostup tepla stavební konstrukcí

Základními veličinami, které charakterizují tepelněizolační schopnost stavební konstrukce, je tepelný odpor R (m2K/W) a součinitel prostupu tepla U (W/m2K). Pro určení těchto veličin je třeba znát skladbu posuzované konstrukce ve směru tepelného toku tzn. materiálové a geometrické charakteristiky jednotlivých vrstev – tloušťku d (m) a součinitel tepelné vodivosti λ (W/mK).

Při posouzení konstrukce z hlediska prostupu tepla je třeba dále zohlednit:

  • typ konstrukce - jednoplášťová, dvouplášťová, obrácená skladba
  • směr tepelného toku – nahoru, dolu, horizontálně
  • polohu konstrukce – konstrukce ve styku s venkovním vzduchem, s nevytápěným prostorem, ve styku se zeminou

Co je tepelný odpor a součinitel prostupu tepla

Tepelný odpor R (m2.K/W) vyjadřuje izolační schopnost konstrukce nebo její vrstvy, tedy kolika čtverečními metry konstrukce při kolika stupních teplotního rozdílu na jejích stranách projde jednotka tepla. Tepelný odpor se vypočítá ze vztahu R=d/λ, kde d je tloušťka konstrukce nebo její vrstvy a λ je součinitel tepelné vodivosti, který vyjadřuje schopnost materiálu vést teplo (W/m.K).

Určitý tepelný odpor mají i vzduchové vrstvy přiléhající těsně ke stavební konstrukci. To je dáno prouděním vzduchu a výměnou tepla sáláním. Tento jev se nazývá odpor při přestupu tepla (Rsi a Rse). Hodnoty odporu při přestupu tepla jsou ovlivněny polohou povrchu (interiér, exteriér, případně vzduchová vrstva uvnitř konstrukce) a pohybem vzduchu.

Součtem tepelných odporů všech vrstev konstrukce a odporů při přestupu tepla získáváme odpor konstrukce při prostupu tepla RT = Rsi + R + Rse.

Převrácenou hodnotou odporu konstrukce při prostupu tepla je součinitel prostupu tepla. Součinitel prostupu tepla (W/m2.K) vyjadřuje, kolik tepla unikne konstrukcí o ploše 1 m2 při rozdílu teplot 1 K. Získáme jej ze vztahu U (UT)=1/RT.

Do tepelného odporu konstrukce jednoplášťových konstrukcí se obvykle uvažují vrstvy, které jsou chráněny před účinky vlhkosti, např. u střech jsou to vrstvy chráněné hydroizolací. V případě obrácené skladby střech je uvažována i vrstva extrudovaného polystyrenu. U dvouplášťových konstrukcí se uvažují vrstvy vnitřního pláště, tzn. od vnitřního líce konstrukce k větrané vzduchové vrstvě. U konstrukce ve styku se zeminou, např. podlahy na zemině, se počítají vrstvy nad hydroizolací. V případě použití nenasákavé tepelné izolace pod hydroizolací, např. extrudovaného polystyrenu nebo pěnového skla, se ve výpočtu uvažuje i tato izolace.

Předpisy související s výpočtem a hodnocením prostupu tepla stavební konstrukce v České republice je řada norem ČSN 73 0540-1 až 4 Tepelná ochrana budov

Dále je to ČSN EN ISO 6946 Stavební prvky a stavební konstrukce – tepelný odpor a součinitel prostupu tepla – výpočtová metoda. Dále jsou to ČSN EN ISO 10456 Stavební materiály a výrobky – tepelně-vlhkostní vlastnosti – tabelové návrhové hodnoty a postupy pro stanovení deklarovaných a návrhových tepelných hodnot, ČSN EN ISO 13370 Tepelné chování budov - Přenos tepla zeminou - Výpočtové metody, ČSN EN ISO 13789 Tepelné chování budov - Měrné tepelné toky prostupem tepla a větráním - Výpočtová metoda.


Mohlo by vás zajímat


Chování fasády s větranou mezerou a využití pro úspory energie, foto estav.tv
23.11.2022doc. Ing. Aleš Rubina, Ph.D., Vysoké učení technické v Brně, Fakulta stavební, Ústav technických zařízení budov, Ing. David Bečkovský, Ph.D., Ing. Olga Rubinová, Ph.D., Vysoké učení technické v Brně. Fakulta stavební, Ústav technických zařízení budov, Ing. Pavel Uher, Ph.D., VUT FAST Brno, redakce TZB-info
Prouděním v mezeře větrané fasády se přenáší významný tok tepla, což je žádoucí v létě. Naopak v zimě je výhodné teplo ze slunečního záření využít ke zmírnění tepelné ztráty prostupem.
Ukázka zpracovávaného projektu: vykreslení potrubních rozvodů (CADKON+ MEP) a dimenzování (PROTECH)
7.9.2022GRAITEC s.r.o.
Pro projektanty vytápění jsme připravily on-line seminář se zaměřením na konkrétní postupy při zpracování výkresové projektové dokumentace včetně výpočtů tepelných ztrát, výkonů, dimenzování a zaregulování. Účast na semináři je ZDARMA a jako přednášející bude zástupce společnosti GRAITEC (Marek Mašek) a PROTECH (Zdeněk Ryšavý).
5.8.2022Schöck-Wittek s.r.o.
V oblasti termického přerušení u balkónů, fasád, sloupů a stěn nabízí Schöck produkty, které jsou ústavem Passivhaus Institut v německém Darmstadtu klasifikovány jako „Certifikované komponenty pasivního domu“.
15.7.2022Schöck-Wittek s.r.o.
Společnost Schöck uvádí na trh nové inovativní produkty pro tepelněizolační napojení svislých nosných konstrukcí. Nová produktová skupina má jméno Schöck Sconnex® a řeší tepelné mosty u stěn a sloupů.
27.4.2022Ing. Peter Juráš, PhD., Stavebná fakulta Žilinskej univerzity, Katedra pozemného stavite
Od roku 2020 sú postupne zhotovované skladby rôznych výrobcov za účelom merania teplôt a retencie dažďovej vody. V súčasnosti prebieha meranie na piatich rôznych skladbách. V tomto článku sú sumarizované poznatky z experimentu a načrtnuté výsledky počas prvého roku merania vo forme charakteristických dní pre jednotlivé obdobia.
6.12.2021Schöck-Wittek s.r.o.
Je tady inovativní řešení pro napojení svislých nosných konstrukcí bez tepelného mostu a bez obalování. Sloupy a stěny nevytápěných podlaží již nemusí mít nevzhledné hlavice z tepelné izolace. Jakým způsobem lze řešit napojení svislých konstrukcí s přerušením tepelného mostu? Kde můžeme získat potřebné informace a podklady a jak vypadá řešení tepelných mostů přímo na stavbě?
Foto Ing. David Bečkovský, Ph.D.
8.10.2021doc. Ing. Aleš Rubina, Ph.D., Vysoké učení technické v Brně, Fakulta stavební, Ústav technických zařízení budov, Ing. David Bečkovský, Ph.D., Ing. Olga Rubinová, Ph.D., Vysoké učení technické v Brně. Fakulta stavební, Ústav technických zařízení budov, Ing. Pavel Uher, Ph.D., Ing. Václav Uher, Ph.D., Ing. Libor Hron, Ing. Jiří Ilčík, VUT FAST Brno
Aplikace pro výpočet tepelně technických parametrů fasády s větranou mezerou je dílčím výsledkem projektu zaměřeného na vývoj komplexního fasádního systému nazvaného „Chytrá fasáda“.
23.8.2021Saint-Gobain Glass
Webinář nejenom o skle v pasivních a nízkoenergetických domech. Architekti do rodinných domů posouvají větší a transparentnější skla, obvyklá dříve spíše v komerčních budovách. Velká skla zplešují psychiku obyvatel a při správném návrhu i tepelnětechnickou bilanci objektu.
29.3.2021Ing. David Průša, prof. RNDr. Ing. Stanislav Šťastník, CSc., Ph.D., FAST VUT v Brně, doc. Ing. Karel Šuhajda, Ph.D., VUT FAST Brno, Ing. Tomáš Žajdlík, VUT FAST v Brně
Předložená práce se zabývá posouzením vlivu typu a materiálové skladby střechy na průběh teplot ve střešní konstrukci. K analýze využívá dynamickou metodu a ve výsledku dokumentuje příznivý účinek vegetační střechy a z tepelnětechnického hlediska pozitivní důsledek na teplotní poměry ve stavbě.
27.1.2021Schöck-Wittek s.r.o., Ing. Ondřej Wittek Ing. Jiří Mrkva
Článek se zaměřuje na problém vznikajícího tepelného mostu u atik, říms, předsazených parapetů a krátkých konzol a jeho řešení pomocí produktu Schöck Isokorb®.
© shaiith – Fotolia.com
6.1.2021redakce
14. až 16. listopadu se na Štrbském plese v hotelu Patria uskuteční 21. mezinárodní konference Tepelná ochrana budov, tentokrát s podtitulem Podstata zabezpečenia energetickej hospodárnosti budov. Příspěvky na konferenci lze přihlásit do 15. ledna.
21.12.2020Ing. Radim Smolka, Ph.D., Ing. Tomáš Petříček, Ph.D., Ing. et Petr Kacálek, Ing. Ph.D., FAST VUT v Brně
Příspěvek pojednává o možnosti využití druhotných polymerních surovin ve stavebnictví – primárně v rámci dílčích konstrukčních detailů. Vybraný detail je u vstupních dveří, tedy v místě podprahové – podkladní konstrukce. Zde jsou navrženy desky přesných tvarů pro bezpečné ukončení navazujících konstrukcí – hydroizolace různých typů, tepelná izolace a vlastní segment rámu dveří. Prvky jsou vystaveny nejen mechanickému namáhání, ale také fyzikálnímu a chemickému.
19.10.2020Ing. Miroslav Procházka, Technický a zkušební ústav stavební Praha s.p., pobočka Brno
Příspěvek pojednává o obsahu připravené revize ČSN 73 2902:2020 Vnější tepelně izolační kompozitní systémy (ETICS) – Navrhování a použití mechanického upevnění pro spojení ETICS s podkladem. Specifikuje provedené změny z hlediska obsahu normy a popisuje obsah nových ustanovení, doplněných za účelem komplexního posouzení stability ETICS.
 
 

Reklama


© Copyright Topinfo s.r.o. 2001-2022, všechna práva vyhrazena.